Source code for pywick.models.classification.senet

# Source: https://github.com/Cadene/pretrained-models.pytorch/blob/master/pretrainedmodels/models/senet.py (License: BSD-3-Clause)
# Pretrained: Yes

"""
SENet implementation as described in: `Squeeze-and-Excitation Networks <https://arxiv.org/pdf/1709.01507.pdf>`_.
"""

from collections import OrderedDict

import torch.nn as nn
from torch.utils import model_zoo

__all__ = ['SENet', 'senet154', 'se_resnet50', 'se_resnet101', 'se_resnet152',
           'se_resnext50_32x4d', 'se_resnext101_32x4d']

pretrained_settings = {
    'senet154': {
        'imagenet': {
            'url': 'http://data.lip6.fr/cadene/pretrainedmodels/senet154-c7b49a05.pth',
            'input_space': 'RGB',
            'input_size': [3, 224, 224],
            'input_range': [0, 1],
            'mean': [0.485, 0.456, 0.406],
            'std': [0.229, 0.224, 0.225],
            'num_classes': 1000
        }
    },
    'se_resnet50': {
        'imagenet': {
            'url': 'http://data.lip6.fr/cadene/pretrainedmodels/se_resnet50-ce0d4300.pth',
            'input_space': 'RGB',
            'input_size': [3, 224, 224],
            'input_range': [0, 1],
            'mean': [0.485, 0.456, 0.406],
            'std': [0.229, 0.224, 0.225],
            'num_classes': 1000
        }
    },
    'se_resnet101': {
        'imagenet': {
            'url': 'http://data.lip6.fr/cadene/pretrainedmodels/se_resnet101-7e38fcc6.pth',
            'input_space': 'RGB',
            'input_size': [3, 224, 224],
            'input_range': [0, 1],
            'mean': [0.485, 0.456, 0.406],
            'std': [0.229, 0.224, 0.225],
            'num_classes': 1000
        }
    },
    'se_resnet152': {
        'imagenet': {
            'url': 'http://data.lip6.fr/cadene/pretrainedmodels/se_resnet152-d17c99b7.pth',
            'input_space': 'RGB',
            'input_size': [3, 224, 224],
            'input_range': [0, 1],
            'mean': [0.485, 0.456, 0.406],
            'std': [0.229, 0.224, 0.225],
            'num_classes': 1000
        }
    },
    'se_resnext50_32x4d': {
        'imagenet': {
            'url': 'http://data.lip6.fr/cadene/pretrainedmodels/se_resnext50_32x4d-a260b3a4.pth',
            'input_space': 'RGB',
            'input_size': [3, 224, 224],
            'input_range': [0, 1],
            'mean': [0.485, 0.456, 0.406],
            'std': [0.229, 0.224, 0.225],
            'num_classes': 1000
        }
    },
    'se_resnext101_32x4d': {
        'imagenet': {
            'url': 'http://data.lip6.fr/cadene/pretrainedmodels/se_resnext101_32x4d-3b2fe3d8.pth',
            'input_space': 'RGB',
            'input_size': [3, 224, 224],
            'input_range': [0, 1],
            'mean': [0.485, 0.456, 0.406],
            'std': [0.229, 0.224, 0.225],
            'num_classes': 1000
        }
    },
}


class SEModule(nn.Module):

    def __init__(self, channels, reduction):
        super(SEModule, self).__init__()
        # Is below same as self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))?
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.fc1 = nn.Conv2d(channels, channels // reduction, kernel_size=1, padding=0)
        self.relu = nn.ReLU(inplace=True)
        self.fc2 = nn.Conv2d(channels // reduction, channels, kernel_size=1, padding=0)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        module_input = x
        x = self.avg_pool(x)
        x = self.fc1(x)
        x = self.relu(x)
        x = self.fc2(x)
        x = self.sigmoid(x)
        return module_input * x


class Bottleneck(nn.Module):
    """
    Base class for bottlenecks that implements `forward()` method.
    """
    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out = self.se_module(out) + residual
        out = self.relu(out)

        return out


class SEBottleneck(Bottleneck):
    """
    Bottleneck for SENet154.
    """
    expansion = 4

    def __init__(self, inplanes, planes, groups, reduction, stride=1,
                 downsample=None):
        super(SEBottleneck, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes * 2, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes * 2)
        self.conv2 = nn.Conv2d(planes * 2, planes * 4, kernel_size=3, stride=stride, padding=1, groups=groups, bias=False)
        self.bn2 = nn.BatchNorm2d(planes * 4)
        self.conv3 = nn.Conv2d(planes * 4, planes * 4, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * 4)
        self.relu = nn.ReLU(inplace=True)
        self.se_module = SEModule(planes * 4, reduction=reduction)
        self.downsample = downsample
        self.stride = stride


class SEResNetBottleneck(Bottleneck):
    """
    ResNet bottleneck with a Squeeze-and-Excitation module. It follows Caffe
    implementation and uses `stride=stride` in `conv1` and not in `conv2`
    (the latter is used in the torchvision implementation of ResNet).
    """
    expansion = 4

    def __init__(self, inplanes, planes, groups, reduction, stride=1,
                 downsample=None):
        super(SEResNetBottleneck, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False, stride=stride)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, groups=groups, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * 4)
        self.relu = nn.ReLU(inplace=True)
        self.se_module = SEModule(planes * 4, reduction=reduction)
        self.downsample = downsample
        self.stride = stride


class SEResNeXtBottleneck(Bottleneck):
    """
    ResNeXt bottleneck type C with a Squeeze-and-Excitation module.
    """
    expansion = 4

    def __init__(self, inplanes, planes, groups, reduction, stride=1,
                 downsample=None, base_width=4):
        super(SEResNeXtBottleneck, self).__init__()
        width = int((planes * (float(base_width) / 64)) * groups)
        self.conv1 = nn.Conv2d(inplanes, width, kernel_size=1, bias=False, stride=1)
        self.bn1 = nn.BatchNorm2d(width)
        self.conv2 = nn.Conv2d(width, width, kernel_size=3, stride=stride, padding=1, groups=groups, bias=False)
        self.bn2 = nn.BatchNorm2d(width)
        self.conv3 = nn.Conv2d(width, planes * 4, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * 4)
        self.relu = nn.ReLU(inplace=True)
        self.se_module = SEModule(planes * 4, reduction=reduction)
        self.downsample = downsample
        self.stride = stride


[docs]class SENet(nn.Module): def __init__(self, block, layers, groups, reduction, dropout_p=0.2, inplanes=128, input_3x3=True, downsample_kernel_size=3, downsample_padding=1, num_classes=1000): """ Parameters ---------- block (nn.Module): Bottleneck class. - For SENet154: SEBottleneck - For SE-ResNet models: SEResNetBottleneck - For SE-ResNeXt models: SEResNeXtBottleneck layers (list of ints): Number of residual blocks for 4 layers of the network (layer1...layer4). groups (int): Number of groups for the 3x3 convolution in each bottleneck block. - For SENet154: 64 - For SE-ResNet models: 1 - For SE-ResNeXt models: 32 reduction (int): Reduction ratio for Squeeze-and-Excitation modules. - For all models: 16 dropout_p (float or None): Drop probability for the Dropout layer. If `None` the Dropout layer is not used. - For SENet154: 0.2 - For SE-ResNet models: None - For SE-ResNeXt models: None inplanes (int): Number of input channels for layer1. - For SENet154: 128 - For SE-ResNet models: 64 - For SE-ResNeXt models: 64 input_3x3 (bool): If `True`, use three 3x3 convolutions instead of a single 7x7 convolution in layer0. - For SENet154: True - For SE-ResNet models: False - For SE-ResNeXt models: False downsample_kernel_size (int): Kernel size for downsampling convolutions in layer2, layer3 and layer4. - For SENet154: 3 - For SE-ResNet models: 1 - For SE-ResNeXt models: 1 downsample_padding (int): Padding for downsampling convolutions in layer2, layer3 and layer4. - For SENet154: 1 - For SE-ResNet models: 0 - For SE-ResNeXt models: 0 num_classes (int): Number of outputs in `last_linear` layer. - For all models: 1000 """ super(SENet, self).__init__() self.inplanes = inplanes if input_3x3: layer0_modules = [ ('conv1', nn.Conv2d(3, 64, 3, stride=2, padding=1, bias=False)), ('bn1', nn.BatchNorm2d(64)), ('relu1', nn.ReLU(inplace=True)), ('conv2', nn.Conv2d(64, 64, 3, stride=1, padding=1, bias=False)), ('bn2', nn.BatchNorm2d(64)), ('relu2', nn.ReLU(inplace=True)), ('conv3', nn.Conv2d(64, inplanes, 3, stride=1, padding=1, bias=False)), ('bn3', nn.BatchNorm2d(inplanes)), ('relu3', nn.ReLU(inplace=True)), ] else: layer0_modules = [ ('conv1', nn.Conv2d(3, inplanes, kernel_size=7, stride=2, padding=3, bias=False)), ('bn1', nn.BatchNorm2d(inplanes)), ('relu1', nn.ReLU(inplace=True)), ] # To preserve compatibility with Caffe weights `ceil_mode=True` # is used instead of `padding=1`. layer0_modules.append(('pool', nn.MaxPool2d(3, stride=2, ceil_mode=True))) self.layer0 = nn.Sequential(OrderedDict(layer0_modules)) self.layer1 = self._make_layer( block, planes=64, blocks=layers[0], groups=groups, reduction=reduction, downsample_kernel_size=1, downsample_padding=0 ) self.layer2 = self._make_layer( block, planes=128, blocks=layers[1], stride=2, groups=groups, reduction=reduction, downsample_kernel_size=downsample_kernel_size, downsample_padding=downsample_padding ) self.layer3 = self._make_layer( block, planes=256, blocks=layers[2], stride=2, groups=groups, reduction=reduction, downsample_kernel_size=downsample_kernel_size, downsample_padding=downsample_padding ) self.layer4 = self._make_layer( block, planes=512, blocks=layers[3], stride=2, groups=groups, reduction=reduction, downsample_kernel_size=downsample_kernel_size, downsample_padding=downsample_padding ) self.avg_pool = nn.AdaptiveAvgPool2d(1) self.dropout = nn.Dropout(dropout_p) if dropout_p is not None else None self.last_linear = nn.Linear(512 * block.expansion, num_classes) def _make_layer(self, block, planes, blocks, groups, reduction, stride=1, downsample_kernel_size=1, downsample_padding=0): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=downsample_kernel_size, stride=stride, padding=downsample_padding, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, groups, reduction, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, groups, reduction)) return nn.Sequential(*layers) def features(self, x): x = self.layer0(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) return x def logits(self, x): x = self.avg_pool(x) if self.dropout is not None: x = self.dropout(x) x = x.view(x.size(0), -1) x = self.last_linear(x) return x def forward(self, x): x = self.features(x) x = self.logits(x) return x
def initialize_pretrained_model(model, num_classes, settings): if num_classes != settings['num_classes']: raise AssertionError('num_classes should be {}, but is {}'.format(settings['num_classes'], num_classes)) model.load_state_dict(model_zoo.load_url(settings['url'])) model.input_space = settings['input_space'] model.input_size = settings['input_size'] model.input_range = settings['input_range'] model.mean = settings['mean'] model.std = settings['std']
[docs]def senet154(num_classes=1000, pretrained='imagenet'): """Pretrained SENet154 model""" model = SENet(SEBottleneck, [3, 8, 36, 3], groups=64, reduction=16, dropout_p=0.2, num_classes=num_classes) if pretrained is not None: settings = pretrained_settings['senet154'][pretrained] initialize_pretrained_model(model, num_classes, settings) return model
[docs]def se_resnet50(num_classes=1000, pretrained='imagenet'): """Pretrained SEResNet50 model""" model = SENet(SEResNetBottleneck, [3, 4, 6, 3], groups=1, reduction=16, dropout_p=None, inplanes=64, input_3x3=False, downsample_kernel_size=1, downsample_padding=0, num_classes=num_classes) if pretrained is not None: settings = pretrained_settings['se_resnet50'][pretrained] initialize_pretrained_model(model, num_classes, settings) return model
[docs]def se_resnet101(num_classes=1000, pretrained='imagenet'): """Pretrained SEResNet101 model""" model = SENet(SEResNetBottleneck, [3, 4, 23, 3], groups=1, reduction=16, dropout_p=None, inplanes=64, input_3x3=False, downsample_kernel_size=1, downsample_padding=0, num_classes=num_classes) if pretrained is not None: settings = pretrained_settings['se_resnet101'][pretrained] initialize_pretrained_model(model, num_classes, settings) return model
[docs]def se_resnet152(num_classes=1000, pretrained='imagenet'): """Pretrained SEResNet152 model""" model = SENet(SEResNetBottleneck, [3, 8, 36, 3], groups=1, reduction=16, dropout_p=None, inplanes=64, input_3x3=False, downsample_kernel_size=1, downsample_padding=0, num_classes=num_classes) if pretrained is not None: settings = pretrained_settings['se_resnet152'][pretrained] initialize_pretrained_model(model, num_classes, settings) return model
[docs]def se_resnext50_32x4d(num_classes=1000, pretrained='imagenet'): """Pretrained SEResNext50 model""" model = SENet(SEResNeXtBottleneck, [3, 4, 6, 3], groups=32, reduction=16, dropout_p=None, inplanes=64, input_3x3=False, downsample_kernel_size=1, downsample_padding=0, num_classes=num_classes) if pretrained is not None: settings = pretrained_settings['se_resnext50_32x4d'][pretrained] initialize_pretrained_model(model, num_classes, settings) return model
[docs]def se_resnext101_32x4d(num_classes=1000, pretrained='imagenet'): """Pretrained SEResNext101 model""" model = SENet(SEResNeXtBottleneck, [3, 4, 23, 3], groups=32, reduction=16, dropout_p=None, inplanes=64, input_3x3=False, downsample_kernel_size=1, downsample_padding=0, num_classes=num_classes) if pretrained is not None: settings = pretrained_settings['se_resnext101_32x4d'][pretrained] initialize_pretrained_model(model, num_classes, settings) return model