Source code for pywick.models.localization.fpn

# Source: https://github.com/kuangliu/pytorch-fpn

'''FPN in PyTorch.

Implementation of `Feature Pyramid Networks for Object Detection <http://openaccess.thecvf.com/content_cvpr_2017/papers/Lin_Feature_Pyramid_Networks_CVPR_2017_paper.pdf>`_.
'''
import torch
import torch.nn as nn
import torch.nn.functional as F


class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, in_planes, planes, stride=1):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes, self.expansion*planes, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(self.expansion*planes)

        self.shortcut = nn.Sequential()
        if stride != 1 or in_planes != self.expansion*planes:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(self.expansion*planes)
            )

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = F.relu(self.bn2(self.conv2(out)))
        out = self.bn3(self.conv3(out))
        out += self.shortcut(x)
        out = F.relu(out)
        return out


[docs]class FPN(nn.Module): def __init__(self, block, num_blocks): super(FPN, self).__init__() self.in_planes = 64 self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) # Bottom-up layers self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) # Top layer self.toplayer = nn.Conv2d(2048, 256, kernel_size=1, stride=1, padding=0) # Reduce channels # Smooth layers self.smooth1 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1) self.smooth2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1) self.smooth3 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1) # Lateral layers self.latlayer1 = nn.Conv2d(1024, 256, kernel_size=1, stride=1, padding=0) self.latlayer2 = nn.Conv2d( 512, 256, kernel_size=1, stride=1, padding=0) self.latlayer3 = nn.Conv2d( 256, 256, kernel_size=1, stride=1, padding=0) def _make_layer(self, block, planes, num_blocks, stride): strides = [stride] + [1]*(num_blocks-1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, stride)) self.in_planes = planes * block.expansion return nn.Sequential(*layers) @staticmethod def _upsample_add(x, y): '''Upsample and add two feature maps. Args: x: (Tensor) top feature map to be upsampled. y: (Tensor) lateral feature map. Returns: (Tensor) added feature map. Note in PyTorch, when input size is odd, the upsampled feature map with `F.interpolate(..., scale_factor=2, mode='nearest')` maybe not equal to the lateral feature map size. e.g. original input size: [N,_,15,15] -> conv2d feature map size: [N,_,8,8] -> upsampled feature map size: [N,_,16,16] So we choose bilinear upsample which supports arbitrary output sizes. ''' _,_,H,W = y.size() return F.interpolate(x, size=(H,W), mode='bilinear') + y
[docs] def forward(self, x): # Bottom-up c1 = F.relu(self.bn1(self.conv1(x))) c1 = F.max_pool2d(c1, kernel_size=3, stride=2, padding=1) c2 = self.layer1(c1) c3 = self.layer2(c2) c4 = self.layer3(c3) c5 = self.layer4(c4) # Top-down p5 = self.toplayer(c5) p4 = self._upsample_add(p5, self.latlayer1(c4)) p3 = self._upsample_add(p4, self.latlayer2(c3)) p2 = self._upsample_add(p3, self.latlayer3(c2)) # Smooth p4 = self.smooth1(p4) p3 = self.smooth2(p3) p2 = self.smooth3(p2) return p2 #, p3, p4, p5
[docs]def FPN101(): # return FPN(Bottleneck, [2,4,23,3]) return FPN(Bottleneck, [2,2,2,2])