Source code for pywick.models.segmentation.deeplab_v3_plus

# Source: https://github.com/doiken23/DeepLab_pytorch

"""
DeepLab v3+ `Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation <https://arxiv.org/abs/1802.02611>`_
"""

import math

import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models

model_url = 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth'

__all__ = ['DeepLabv3_plus']

class Atrous_Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, inplanes, planes, stride=1, rate=1, downsample=None):
        super(Atrous_Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
                               dilation=rate, padding=rate, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * 4)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out


class Atrous_ResNet_features(nn.Module):

    def __init__(self, block, layers, pretrained=False):
        super(Atrous_ResNet_features, self).__init__()
        self.inplanes = 64

        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0], stride=1, rate=1)
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2, rate=1)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2, rate=1)
        self.layer4 = self._make_MG_unit(block, 512, stride=1, rate=2)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()

        if pretrained:
            print('load the pre-trained model.')
            resnet = models.resnet101(pretrained)
            self.conv1 = resnet.conv1
            self.bn1 = resnet.bn1
            self.layer1 = resnet.layer1
            self.layer2 = resnet.layer2

    def _make_layer(self, block, planes, blocks, stride=1, rate=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, rate, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)

    def _make_MG_unit(self, block, planes, blocks=None, stride=1, rate=1):
        if blocks is None:
            blocks = [1, 2, 4]
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, rate=blocks[0] * rate, downsample=downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, len(blocks)):
            layers.append(block(self.inplanes, planes, stride=1, rate=blocks[i] * rate))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        conv2 = x
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        return x, conv2


class Atrous_module(nn.Module):
    def __init__(self, inplanes, planes, rate):
        super(Atrous_module, self).__init__()
        self.atrous_convolution = nn.Conv2d(inplanes, planes, kernel_size=3,
                                            stride=1, padding=rate, dilation=rate)
        self.batch_norm = nn.BatchNorm2d(planes)

    def forward(self, x):
        x = self.atrous_convolution(x)
        x = self.batch_norm(x)

        return x


[docs]class DeepLabv3_plus(nn.Module): def __init__(self, num_classes, small=True, pretrained=True, **kwargs): super(DeepLabv3_plus, self).__init__() block = Atrous_Bottleneck self.resnet_features = Atrous_ResNet_features(block, [3, 4, 23], pretrained) rates = [1, 6, 12, 18] self.aspp1 = Atrous_module(2048, 256, rate=rates[0]) self.aspp2 = Atrous_module(2048, 256, rate=rates[1]) self.aspp3 = Atrous_module(2048, 256, rate=rates[2]) self.aspp4 = Atrous_module(2048, 256, rate=rates[3]) self.image_pool = nn.Sequential(nn.AdaptiveMaxPool2d(1), nn.Conv2d(2048, 256, kernel_size=1)) self.fc1 = nn.Sequential(nn.Conv2d(1280, 256, kernel_size=1), nn.BatchNorm2d(256)) self.reduce_conv2 = nn.Sequential(nn.Conv2d(256, 48, kernel_size=1), nn.BatchNorm2d(48)) self.last_conv = nn.Sequential(nn.Conv2d(304, 256, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(256), nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(256), nn.Conv2d(256, num_classes, kernel_size=1, stride=1)) def forward(self, x): x, conv2 = self.resnet_features(x) x1 = self.aspp1(x) x2 = self.aspp2(x) x3 = self.aspp3(x) x4 = self.aspp4(x) x5 = self.image_pool(x) x5 = F.interpolate(x5, size=x4.size()[2:], mode='nearest') x = torch.cat((x1, x2, x3, x4, x5), dim=1) x = self.fc1(x) x = F.interpolate(x, scale_factor=(4, 4), mode='bilinear') low_lebel_features = self.reduce_conv2(conv2) x = torch.cat((x, low_lebel_features), dim=1) x = self.last_conv(x) x = F.interpolate(x, scale_factor=(4, 4), mode='bilinear') return x