# Source code for pywick.optimizers.sgdw

# Source: https://github.com/pytorch/pytorch/pull/3740

import torch
from torch.optim.optimizer import Optimizer
from torch.optim import SGD

[docs]class SGDW(Optimizer):
r"""Implements stochastic gradient descent warm (optionally with momentum).

It has been proposed in Fixing Weight Decay Regularization in Adam <https://arxiv.org/abs/1711.05101>_.

Nesterov momentum is based on the formula from
On the importance of initialization and momentum in deep learning <http://www.cs.toronto.edu/%7Ehinton/absps/momentum.pdf>_.

:param params (iterable): iterable of parameters to optimize or dicts defining parameter groups
:param lr: (float): learning rate
:param momentum: (float, optional): momentum factor (default: 0)
:param weight_decay: (float, optional): weight decay (L2 penalty) (default: 0)
:param dampening: (float, optional): dampening for momentum (default: 0)
:param nesterov: (bool, optional): enables Nesterov momentum (default: False)

Example:
>>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9)
>>> loss_fn(model(input_), target).backward()
>>> optimizer.step()

.. note::
The implementation of SGD with Momentum/Nesterov subtly differs from
Sutskever et. al. and implementations in some other frameworks.

Considering the specific case of Momentum, the update can be written as

.. math::
v = \rho * v + g \\
p = p - lr * v

where p, g, v and :math:\rho denote the parameters, gradient,
velocity, and momentum respectively.

This is in contrast to Sutskever et. al. and
other frameworks which employ an update of the form

.. math::
v = \rho * v + lr * g \\
p = p - v

The Nesterov version is analogously modified.
"""

def __init__(self, params, lr=0.003, momentum=0, dampening=0, weight_decay=0, nesterov=False):
defaults = dict(lr=lr, momentum=momentum, dampening=dampening, weight_decay=weight_decay, nesterov=nesterov)
if nesterov and (momentum <= 0 or dampening != 0):
raise ValueError("Nesterov momentum requires a momentum and zero dampening")
super(SGD, self).__init__(params, defaults)

def __setstate__(self, state):
super(SGD, self).__setstate__(state)
for group in self.param_groups:
group.setdefault('nesterov', False)

def step(self, closure=None):
"""Performs a single optimization step.

:param closure: (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()

for group in self.param_groups:
weight_decay = group['weight_decay']
momentum = group['momentum']
dampening = group['dampening']
nesterov = group['nesterov']

for p in group['params']:
continue
if momentum != 0:
param_state = self.state[p]
if 'momentum_buffer' not in param_state:
buf = param_state['momentum_buffer'] = torch.zeros_like(p.data)