Source code for pywick.optimizers.sgdw

# Source:

import torch
from torch.optim.optimizer import Optimizer
from torch.optim import SGD

[docs]class SGDW(Optimizer): r"""Implements stochastic gradient descent warm (optionally with momentum). It has been proposed in `Fixing Weight Decay Regularization in Adam <>`_. Nesterov momentum is based on the formula from `On the importance of initialization and momentum in deep learning <>`_. :param params (iterable): iterable of parameters to optimize or dicts defining parameter groups :param lr: (float): learning rate :param momentum: (float, optional): momentum factor (default: 0) :param weight_decay: (float, optional): weight decay (L2 penalty) (default: 0) :param dampening: (float, optional): dampening for momentum (default: 0) :param nesterov: (bool, optional): enables Nesterov momentum (default: False) Example: >>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9) >>> optimizer.zero_grad() >>> loss_fn(model(input_), target).backward() >>> optimizer.step() .. note:: The implementation of SGD with Momentum/Nesterov subtly differs from Sutskever et. al. and implementations in some other frameworks. Considering the specific case of Momentum, the update can be written as .. math:: v = \rho * v + g \\ p = p - lr * v where p, g, v and :math:`\rho` denote the parameters, gradient, velocity, and momentum respectively. This is in contrast to Sutskever et. al. and other frameworks which employ an update of the form .. math:: v = \rho * v + lr * g \\ p = p - v The Nesterov version is analogously modified. """ def __init__(self, params, lr=0.003, momentum=0, dampening=0, weight_decay=0, nesterov=False): defaults = dict(lr=lr, momentum=momentum, dampening=dampening, weight_decay=weight_decay, nesterov=nesterov) if nesterov and (momentum <= 0 or dampening != 0): raise ValueError("Nesterov momentum requires a momentum and zero dampening") super(SGD, self).__init__(params, defaults) def __setstate__(self, state): super(SGD, self).__setstate__(state) for group in self.param_groups: group.setdefault('nesterov', False) def step(self, closure=None): """Performs a single optimization step. :param closure: (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: weight_decay = group['weight_decay'] momentum = group['momentum'] dampening = group['dampening'] nesterov = group['nesterov'] for p in group['params']: if p.grad is None: continue d_p = if momentum != 0: param_state = self.state[p] if 'momentum_buffer' not in param_state: buf = param_state['momentum_buffer'] = torch.zeros_like( buf.mul_(momentum).add_(d_p) else: buf = param_state['momentum_buffer'] buf.mul_(momentum).add_(1 - dampening, d_p) if nesterov: d_p = d_p.add(momentum, buf) else: d_p = buf if weight_decay != 0:, return loss